GalvanizeIt! Online Seminar

Different Appearances

The appearance of hot-dip galvanized steel immediately after galvanizing can be bright and shiny, spangled, matte gray, or a combination of these. There are a number of reasons for the difference in appearance, as explored here, but regardless if the piece is shiny or dull, the appearance has no effect on the corrosion performance. And in time after exposure to the environment, all galvanized coatings will take on a uniform matte gray appearance.

Reasons for Different Appearances

Steel Chemistry

The most common reason for galvanized steel to have different appearances is the chemistry of the steel pieces. There are two elements of steel chemistry which most strongly influence the final appearance; silicon and phosphorous. Both silicon and phosphorous promote coating growth, and this thicker coating is responsible for the differing appearance.

The amount of silicon added during the steel making process to deoxidize the steel can create differences in appearance of galvanized products. The recommended silicon composition is either less than 0.04% or between 0.15% and 0.25%. Any steels not within these ranges are considered reactive steels and are expected to form zinc coatings that tend to be thicker.

In addition to producing thicker coatings, highly reactive steels tend to have a matte gray or mottled appearance instead of the typical bright coating. This difference in appearance is a result of the rapid zinc-iron intermetallic growth that consumes all of the bright, pure zinc. This growth of the intermetallic layer is generally out of the galvanizer’s control, because they usually do not have prior knowledge of the steel’s composition. However, this increased coating thickness can be beneficial in some respects because time to firrst maintenance is directly proportional to coating thickness.

In Figure 18, the micrograph on the left shows a regular zinc-iron alloy, while the micrograph on the right shows an irregular zinc-iron alloy. These clearly show the microscopic level differences that can occur due to the amount of silicon in the steel being hot-dip galvanized.

Figure 18: Regular vs. Irregular Zinc-Iron Alloy Layers

The Sandelin curve, as seen in Figure 19, compares the zinc coating thickness to the mass percentage of silicon in the steel. The area on the graph labeled “I” is called the Sandelin area and the coatings tend to be thick and dull gray as a direct result of the percentage of silicon present in the base steel. This area is known as the Sandelin range since Dr. Sandelin, a metallurgist, performed the experimental work to show this behavior of galvanized steel. The Sandelin area is roughly between 0.05% and 0.15% silicon. The area on the graph labeled “II”, which represents a steel content of greater than 0.25% silicon, shows the coating thickness increases with increased silicon content and then starts to level off at around 0.4% silicon.

Figure 19: Sandelin Curve

Figure 20: Coating Due to Phosphorous

In addition to silicon, the presence of phosphorus influences the reaction between the liquid zinc and the steel, as seen in Figure 20. Phosphorus is generally considered an impurity in steel except where its beneficial effects on machinability and resistance to atmospheric corrosion are desired. Some steels such as ASTM A 242 Type 1 present problems because they may contain both a high level of phosphorus and a high level of silicon. The presence of phosphorus generally produces smooth dull coating areas and ridges of a thicker coating where there is increased intermetallic growth. The end-result is a rough surface with ridges appearance.

Figure 21 is an example of products with separate galvanized pieces that have very different appearances due to the difference in steel chemistry. However, all of these products still have an equal amount of corrosion resistance throughout and are acceptable.

Figure 21: Shiny vs. Dull

Cooling Rate

Figure 22: Coating Appearance Due to Cooling Rate Difference

A visually dull or shiny coating on a product can be caused by the different rate of cooling of a product. In Figure 22, the outer edges were cooled rapidly, which allowed free zinc or an eta layer to form on top of the intermetallic layers. The zinc in the center of the product that would have formed the eta layer was consumed in the reaction with the iron after the part was removed from the galvanizing kettle and formed an intermetallic layer that gives the dull gray look. Eventually as the product weathers, the differences in appearance will disappear and it will become a dull gray color throughout.

Steel Processing

Figure 23: Coating Appearance Due to Steel Processing

In addition to temperature and chemistry of the steel, the processing of the steel can also create a bright or dull appearance in galvanized products. The top rail in Figure 23 has a winding pattern of dull gray areas corresponding to processing during the tube making. The stresses in the steel affect the intermetallic formation and can create this striped look. The corrosion protection is not affected and these parts are acceptable.